Bioresources and Bioprocessing (Apr 2024)

Plant endophytic fungi exhibit diverse biotransformation pathways of mogrosides and show great potential application in siamenoside I production

  • Wenxi Lin,
  • Qiang Jiang,
  • Yamin Dong,
  • Yiwen Xiao,
  • Ya Wang,
  • Boliang Gao,
  • Du Zhu

DOI
https://doi.org/10.1186/s40643-024-00754-8
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Fungal endophytes, as an untapped resource of glycoside hydrolase biocatalysts, need to be further developed. Mogroside V, the primary active compound in Siraitia grosvenorii fruit, can be converted into other various bioactive mogrosides by selective hydrolysis of glucose residues at C3 and C24 positions. In present study, 20 fungal strains were randomly selected from our endophytic fungal strain library to assess their capability for mogroside V transformation. The results revealed that relatively high rate (30%) endophytic fungal strains exhibited transformative potential. Further analysis indicated that endophytic fungi could produce abundant mogrosides, and the pathways for biotransforming mogroside V showed diverse. Among the given fungal endophytes, Aspergillus sp. S125 almost completely converted mogroside V into the end-products mogroside II A and aglycone within just 2 days of fermentation; Muyocopron sp. A5 produced rich intermediate products, including siamenoside I, and the end-product mogroside II E. Subsequently, we optimized the fermentation conditions for Aspergillus sp. S125 and Muyocopron sp. A5 to evaluate the feasibility of large-scale mogroside V conversion. After optimization, Aspergillus sp. S125 converted 10 g/L of mogroside V into 4.5 g/L of mogroside II A and 3.6 g/L of aglycone after 3 days of fermentation, whereas Muyocopron sp. A5 selectively produced 4.88 g/L of siamenoside I from 7.5 g/L of mogroside V after 36 h of fermentation. This study not only identifies highly effective biocatalytic candidates for mogrosides transformation, but also strongly suggests the potential of plant endophytic fungi as valuable resources for the biocatalysis of natural compounds.

Keywords