Remote Sensing (Mar 2022)
Robust Object Categorization and Scene Classification over Remote Sensing Images via Features Fusion and Fully Convolutional Network
Abstract
The latest visionary technologies have made an evident impact on remote sensing scene classification. Scene classification is one of the most challenging yet important tasks in understanding high-resolution aerial and remote sensing scenes. In this discipline, deep learning models, particularly convolutional neural networks (CNNs), have made outstanding accomplishments. Deep feature extraction from a CNN model is a frequently utilized technique in these approaches. Although CNN-based techniques have achieved considerable success, there is indeed ample space for improvement in terms of their classification accuracies. Certainly, fusion with other features has the potential to extensively improve the performance of distant imaging scene classification. This paper, thus, offers an effective hybrid model that is based on the concept of feature-level fusion. We use the fuzzy C-means segmentation technique to appropriately classify various objects in the remote sensing images. The segmented regions of the image are then labeled using a Markov random field (MRF). After the segmentation and labeling of the objects, classical and CNN features are extracted and combined to classify the objects. After categorizing the objects, object-to-object relations are studied. Finally, these objects are transmitted to a fully convolutional network (FCN) for scene classification along with their relationship triplets. The experimental evaluation of three publicly available standard datasets reveals the phenomenal performance of the proposed system.
Keywords