Animal Nutrition (Sep 2024)

Characterization of serum proteomic and inflammatory profiling at early stage of iron deficiency in weaned piglets

  • Guang Liu,
  • Lan Li,
  • Shuan Liu,
  • Zhenglin Dong,
  • Jian Zhou,
  • Chengyan Gong,
  • Yulong Yin,
  • Wenjie Tang,
  • Dan Wan

Journal volume & issue
Vol. 18
pp. 380 – 389

Abstract

Read online

The objective of this study was to examine the early serum proteomic and inflammatory profiles of weaned piglets subjected to iron deficiency. Twelve healthy piglets (Duroc × Landrace × Large Yorkshire, body weight: 4.96 ± 0.05 kg) were weaned at 21 days of age. Subsequently, these animals were randomly allocated to one of two groups, with six replicates in each group (maintaining a male-to-female ratio of 1:1), the control group (administered 100 mg/kg Fe as FeSO4·H2O) and L-Fe group (no additional Fe supplementation). The results showed that 42 days after initiating, compared with control group, routine blood analysis revealed a reduction in serum iron content, red blood cell (RBC) count, hemoglobin (HGB) content, hematocrit (HCT), and mean corpuscular volume (MCV) (P 0.05). During the early stages of iron deficiency, piglets exhibited increased villus height (VH) and the ratio of VH to crypt depth (CD) in the duodenum (P < 0.05) and increased expression levels of iron transporters, including duodenal cytochrome (Cybrd), divalent metal transport 1 (DMT1), and ferritin light chain (FTL) (P < 0.05). Subsequently, isobaric tags for relative and absolute quantitation (iTRAQ) were used to identify serum proteins. Gene Ontology (GO) analysis of the differentially abundant proteins (DAP) revealed that 24 of the 30 DAP were involved in platelet function, immune response, cellular metabolism, transcription, and protein synthesis. Notably, prothrombin, asporin (ASPN), and Rac family small GTPase 3 (RAC3) expression was induced, whereas glycoprotein Ib platelet subunit alpha (GPIbA) expression was decreased. This was accompanied by a substantial reduction in serum complement 3 (C3) and complement 4 (C4) contents (P < 0.05), with elevated the contents of interleukin-1β (IL-1β), interleukin-4 (IL-4), interleukin-6 (IL-6), transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α) (P < 0.05). Our findings underscore the essential role of dietary iron supplementation in maintaining iron homeostasis and modulating inflammatory responses in piglets.

Keywords