mSystems (Feb 2024)

Ruminal microbiota-host crosstalks promote ruminal epithelial development in neonatal lambs with alfalfa hay introduction

  • Gaorui Bian,
  • Shiqiang Yu,
  • Chao Cheng,
  • Haixuan Huang,
  • Junhua Liu

DOI
https://doi.org/10.1128/msystems.01034-23
Journal volume & issue
Vol. 9, no. 2

Abstract

Read online

ABSTRACTRuminal microbiota is gradually established after birth, while microbiota maturation could be highly diverse because of varied solid dietary accessibility. However, how the ruminal microbiota accreted from postnatal hay diets alters rumen epithelial development, and how this affects animal health remains largely unknown. Here, neonatal lambs were introduced to starchy corn-soybean starter or corn-soybean starter + alfalfa hay (AH) to investigate the influences of early life ruminal microbiome on rumen epithelial development using integrated 16s rRNA sequencing-metagenome-transcriptome approaches. The results showed that AH introduction elevated average daily weight gain, rumen weight and volume, rumen epithelial papillae length, and rumen muscle layer thickness. Meanwhile, the relative abundance of fibrolytic bacteria (Christensenellaceae R-7 group, Prevotellaceae UCG-001, and Succinivibrio), acetate producer (Acetitomaculum and Mitsuokella), and propionate producer Succiniclasticum was increased in the rumen content by AH supplementation (P < 0.05). Moreover, AH introduction decreased the relative abundance of total CAZymes, CBM, and GH and increased the abundance of KO genes related to volatile fatty acid (VFA) generation in the rumen content. AH lambs had a higher relative abundance of Succiniclasticum, Megasphaera, Succinivibrio, and Suttonella (P < 0.05), while a lower relative abundance of Cloacibacillus, Desulfovibrio, Dialister, Intestinimonas, Parabacteroides, and Pseudoscardovia (P < 0.05) in the rumen epithelial samples. Furthermore, these alterations in ruminal microbial structure and function resulted in ruminal epithelial cell proliferation and development pathways activation. In summary, AH introduction benefited ruminal fiber degradation and VFA generation bacteria colonization and promoted ruminal epithelial development. These findings provide new insights into ruminal microbial–host interactions in the early life.IMPORTANCEWhile it is established that a fiber-rich diet promotes rumen development in lambs, further research is needed to investigate the precise response of rumen microbiota and epithelium to high-quality alfalfa hay. Here, we observed that the inclusion of alfalfa hay led to a discernible alteration in the developmental trajectory of the rumen. Notably, there was a favorable shift in the rumen's volume, morphology, and the development of rumen papillae. Furthermore, ruminal microbial structure and function resulted in ruminal epithelial cell proliferation and development pathways activation, collectively provide compelling evidence supporting the capacity of alfalfa hay to enhance rumen development and health through ruminal micrbiota-host crosstalks. Our findings elucidate the functional response of the rumen to alfalfa hay introduction, providing new insights into strategies for promoting healthy development of the rumen in young ruminants.

Keywords