Revista da Sociedade Brasileira de Medicina Tropical (Dec 2020)
Genotoxic Effects of Semi-Synthetic Isodillapiole on Oviposition in Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae)
Abstract
Abstract INTRODUCTION: Semi-synthetic dillapiole compounds derived from Piper aduncum essential oil are used as alternative insecticides to control insecticide-resistant Aedes aegypti. Thus, we aimed to evaluate the genotoxic effects of semi-synthetic isodillapiole on the nuclei of neuroblasts (larvae) and oocytes (females) and the mean oviposition rates of the females over four generations (G1, G2, G3, and G4) of Ae. aegypti. METHODS: Larvae were captured in the city of Manaus, Amazonas state, Brazil, and exposed to isodillapiole in bioassays (20, 40, and 60 µg/mL) and a negative control (0.05% DMSO in tap water) for 4 h. The cerebral ganglia were extracted from the larvae and oocytes from the adult females to prepare slides for cytogenetic analysis. Breeding pairs were established and eggs counts were quantified taken after the bioassays. RESULTS: The analysis of 20,000 interphase nuclei of neuroblasts and oocytes indicated significant genotoxicity (micronuclei, budding, polynucleated cells, and other malformations) compared to that of the control. Metaphasic and anaphasic nuclei presented chromosomal breaks; however, no significant variation and damage was observed in the negative control. A significant reduction in mean oviposition rates was also recorded following exposure to isodillapiole over the four generations (G1, G2, G3, and G4). CONCLUSIONS: The toxic and genotoxic effects of isodillapiole on Ae. aegypti were caused by reduced oviposition in the females and nuclear abnormalities over the four generations of the trials. Further studies are required, rather than our in vitro assays, to verify the efficacy of exposure to this compound for controlling Ae. aegypti.
Keywords