International Journal of Photoenergy (Jan 2022)

Building Information Modeling Assisted Carbon Emission Impact Assessment of Prefabricated Residential Buildings in the Design Phase: Case Study of a Chinese Building

  • Haining Wang,
  • Liang Zhao,
  • Hong Zhang,
  • Pei Liu,
  • Bo Sun,
  • Keming Hou

DOI
https://doi.org/10.1155/2022/2275642
Journal volume & issue
Vol. 2022

Abstract

Read online

The construction industry is energy-intensive and labor-intensive, which has great potential in reducing energy demand and carbon emissions. The construction method of off-site prefabricated components has many advantages to make it a good substitute for traditional methods. The purpose of this paper is to reduce the carbon emissions of prefabricated residential concrete members by improving the standardization rate of prefabricated components in the architectural design stage. In addition, this paper also uses building information modeling technology to establish Revit models and develops Revit using C# language to achieve rapid calculation of the prefabrication rate of building and standardization rate of components. The calculation results of the case show that, in the design stage, the carbon emissions are reduced by 2034.16 kg CO2e by improving the standardization rate of prefabricated components, accounting for 0.1552% of the carbon emissions of all prefabricated components. This study can help the designer reduce the carbon emissions of prefabricated components, and this technology may make a significant contribution in improving the environmental sustainability of prefabricated buildings.