Metals (Jul 2022)

Fabrication and Characterization of Porous Copper with Ultrahigh Porosity

  • Jian Xiao,
  • Yong Li,
  • Jinming Liu,
  • Qianlei Zhao

DOI
https://doi.org/10.3390/met12081263
Journal volume & issue
Vol. 12, no. 8
p. 1263

Abstract

Read online

The fabrication of porous copper with ultrahigh porosity by adding 90% spacer content was an unsolved technical problem in the field. In this study, the green compacts placed on a layer wire mesh during the decomposition process of needlelike carbamide as space holder with volume content up to 90% was successfully conducted to fabricate nondestructive porous copper. Compared with the green compacts directly placed on an alumina plate, the use of this support was crucial for manufacturing highly-porous copper. Characterization of macro- and microscopic morphologies as well as quasi-static compressive test for the obtained porous copper samples was carried out. The results show that the porosity of porous copper samples with 87.3% was slightly smaller than the spacer content. The SEM observation indicates that the internal pores of porous copper formed an open-cell structure and its skeleton was very dense. The compressive tests show that the stress–strain curve of a porous copper sample exhibits the typical characteristics of elastic-plastic metal foam. The energy absorption properties of porous copper samples were also comparable. This study provides a possibility for the preparation of porous copper and other metals with ultrahigh porosity by the well-known space holder method.

Keywords