Symmetry (Apr 2022)

Object Detection by Attention-Guided Feature Fusion Network

  • Yuxuan Shi,
  • Yue Fan,
  • Siqi Xu,
  • Yue Gao,
  • Ran Gao

DOI
https://doi.org/10.3390/sym14050887
Journal volume & issue
Vol. 14, no. 5
p. 887

Abstract

Read online

One of the most noticeable characteristics of security issues is the prevalence of “Security Asymmetry”. The safety of production and even the lives of workers can be jeopardized if risk factors aren’t detected in time. Today, object detection technology plays a vital role in actual operating conditions. For the sake of warning danger and ensuring the work security, we propose the Attention-guided Feature Fusion Network method and apply it to the Helmet Detection in this paper. AFFN method, which is capable of reliably detecting objects of a wider range of sizes, outperforms previous methods with an mAP value of 85.3% and achieves an excellent result in helmet detection with an mAP value of 62.4%. From objects of finite sizes to a wider range of sizes, the proposed method achieves “symmetry” in the sense of detection.

Keywords