IEEE Access (Jan 2020)

TIMCC: On Data Freshness in Privacy-Preserving Incentive Mechanism Design for Continuous Crowdsensing Using Reverse Auction

  • Xiaoqiang Ma,
  • Weiwei Deng,
  • Feng Wang,
  • Menglan Hu,
  • Fei Chen,
  • Mohammad Mehedi Hassan

DOI
https://doi.org/10.1109/ACCESS.2019.2962212
Journal volume & issue
Vol. 8
pp. 1777 – 1789

Abstract

Read online

As an emerging paradigm that leverages the wisdom and efforts of the crowd, mobile crowdsensing has shown its great potential to collect distributed data. The crowd may incur such costs and risks as energy consumption, memory consumption, and privacy leakage when performing various tasks, so they may not be willing to participate in crowdsensing tasks unless they are well-paid. Hence, a proper privacy-preserving incentive mechanism is of great significance to motivate users to join, which has attracted a lot of research efforts. Most of the existing works regard tasks as one-shot tasks, which may not work very well for the type of tasks that requires continuous monitoring, e.g., WIFI signal sensing, where the WiFi signal may vary over time, and users are required to contribute continuous efforts. The incentive mechanism for continuous crowdsensing has yet to be investigated, where the corresponding tasks need continuous efforts of users, and the freshness of the sensed data is very important. In this paper, we design TIMCC, a privacy-preserving incentive mechanism for continuous crowdsensing. In contrast to most existing studies that treat tasks as one-shot tasks, we consider the tasks that require users to contribute continuous efforts, where the freshness of data is a key factor impacting the value of data, which further determines the rewards. We introduce a metric named age of data that is defined as the amount of time elapsed since the generation of the data to capture the freshness of data. We adopt the reverse auction framework to model the connection between the platform and the users. We prove that the proposed mechanism satisfies individual rationality, computational efficiency, and truthfulness. Simulation results further validate our theoretical analysis and the effectiveness of the proposed mechanism.

Keywords