Data Science Journal (Nov 2020)

'Fitness for Use' of Data Objects Described with Quality Maturity Matrix at Different Phases of Data Production

  • Heinke Höck,
  • Frank Toussaint,
  • Hannes Thiemann

DOI
https://doi.org/10.5334/dsj-2020-045
Journal volume & issue
Vol. 19, no. 1

Abstract

Read online

Fitness for use information should be stored to enable easy identification of data objects that are suitable for re-use – a feature which can only be assessed by the data user. With the described Quality Maturity Matrix (QMM), we want to provide a metric for a discrete measurement of the fitness for use of data objects. We use the data maturity to describe the degree of formalization and standardization of the data with respect to the quality of data and metadata. The data objects mature as they pass through the different post-production steps where they undergo different curation measures. The higher the maturity and the level in the QMM, the easier is it for the user to judge the appropriateness of the data for a possible re-use. For our development of the Quality Maturity Matrix we link the maturity levels to the five phases concept, production/processing, project collaboration/intended use, long-term archiving, and impact re-use. Each of the five levels is measured with regard to the four criteria consistency, completeness, accessibility, and accuracy. For the description we use the terms of the Open Archival Information System (OAIS). We relate our data focused QMM to some existing maturity matrices which put the focus on the maturity of the curation process rather than of the data objects themselves. In addition, we make an attempt to establish a connection between the QMM criteria of data assessment and the FAIR Data principles.

Keywords