Minerals (May 2018)

Timing of Secondary Hydrothermal Alteration of the Luobusa Chromitites Constrained by Ar/Ar Dating of Chrome Chlorites

  • Wei Guo,
  • Huaiyu He,
  • Youjuan Li,
  • Xiujuan Bai,
  • Fei Su,
  • Yan Liu,
  • Rixiang Zhu

DOI
https://doi.org/10.3390/min8060230
Journal volume & issue
Vol. 8, no. 6
p. 230

Abstract

Read online

Chrome chlorites are usually found as secondary phases formed by hydrothermal alteration of chromite deposits and associated mafic/ultramafic rocks. Here, we report the 40Ar/39Ar age of chrome chlorites separated from the Luobusa massive chromitites which have undergone secondary alteration by CO2-rich hydrothermal fluids. The dating results reveal that the intermediate heating steps (from 4 to 10) of sample L7 generate an age plateau of 29.88 ± 0.42 Ma (MSWD = 0.12, plateau 39Ar = 74.6%), and the plateau data points define a concordant inverse isochron age of 30.15 ± 1.05 Ma (MSWD = 0.08, initial 40Ar/36Ar = 295.8 ± 9.7). The Ar release pattern shows no evidence of later degassing or inherited radiogenic component indicated by an atmospheric intercept, thus representing the age of the hydrothermal activity. Based on the agreement of this hydrothermal age with the ~30 Ma adakitic plutons exposed in nearby regions (the Zedong area, tens of kilometers west Luobusa) and the extensive late Oligocene plutonism distributed along the southeastern Gangdese magmatic belt, it is suggested that the hydrothermal fluids are likely related to the ~30 Ma magmatism. The hydrothermal fluid circulation could be launched either by remote plutons (such as the Sangri granodiorite, the nearest ~30 Ma pluton west Luobusa) or by a similar coeval pluton in the local Luobusa area (inferred, not found or reported so far). Our results provide important clues for when the listwanites in Luobusa were formed.

Keywords