An Improved Empirical Model for Estimating the Geometry of the Soil Wetting Front with Surface Drip Irrigation
Irouri Cristóbal-Muñoz,
Jorge Víctor Prado-Hernández,
Antonio Martínez-Ruiz,
Fermín Pascual-Ramírez,
David Cristóbal-Acevedo,
David Cristóbal-Muñoz
Affiliations
Irouri Cristóbal-Muñoz
Programa de Posgrado de Ingeniería Agrícola y Uso Integral del Agua, Universidad Autónoma Chapingo, Texcoco CP 56230, Mexico
Jorge Víctor Prado-Hernández
Programa de Posgrado de Ingeniería Agrícola y Uso Integral del Agua, Universidad Autónoma Chapingo, Texcoco CP 56230, Mexico
Antonio Martínez-Ruiz
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Tecamachalco, Puebla CP 75484, Mexico
Fermín Pascual-Ramírez
Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México—Campus Morelia, Antigua Carretera a Pátzcuaro 8701, Morelia CP 58190, Mexico
David Cristóbal-Acevedo
Departamento de Suelos, Universidad Autónoma Chapingo, Texcoco CP 56230, Mexico
David Cristóbal-Muñoz
Informatics Chair Group, Biosystems Engineering Department, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
Wetting pattern geometry is useful in determining the spacing between emitters and the irrigation time in drip irrigation systems. This research aimed to generate an empirical model to estimate the width and depth of the wetting front in surface drip irrigation based on experimental tests in a cube-shaped container with transparent walls in soils with a sandy clay loam texture, with hydraulic conductivities from 2.316 to 3.945 cm h−1, and organic matter contents from 1.7 to 2.8%, and different irrigation conditions: discharge rates of 1.44, 2.90, 3.00, 3.75, and 4.00 L h−1, initial moisture levels between permanent wilting point and field capacity, and irrigation times from 0.58 to 9.50 h. The experimental conditions and the strategy for measuring the wetting front and soil moisture are detailed so the experiment is verifiable. The proposed model performed better than five other empirical models, with average values of 3 cm for the root mean square error and 0.88 for the Nash and Sutcliffe efficiency coefficient. The generated model is efficient and simple and can be a very useful tool for the design and operation of surface drip irrigation systems in soils with conditions similar to those of this study.