Agronomy (Jun 2020)

Steam Refining with Subsequent Alkaline Lignin Extraction as an Alternative Pretreatment Method to Enhance the Enzymatic Digestibility of Corn Stover

  • Malte Jörn Krafft,
  • Marie Bendler,
  • Andreas Schreiber,
  • Bodo Saake

DOI
https://doi.org/10.3390/agronomy10060811
Journal volume & issue
Vol. 10, no. 6
p. 811

Abstract

Read online

Agricultural residues are promising and abundant feedstocks for the production of monomeric carbohydrates, which can be gained after pretreatment and enzymatic hydrolysis. These monomeric carbohydrates can be fermented to platform chemicals, like ethanol or succinic acid. Due to its high availability, corn stover is a feedstock of special interest in such considerations. The natural recalcitrance of lignocellulosic material against degradation necessitates a pretreatment before the enzymatic hydrolysis. In the present study, a novel combination of steam refining and alkaline lignin extraction was tested as a pretreatment process for corn stover. This combination combines the enhancement of the enzymatic hydrolysis and steam refining lignin can be gained for further utilization. Afterward, the obtained yields after enzymatic hydrolysis were compared with those after steam refining without alkaline extraction. After steam refining at temperatures between 160 °C and 210 °C and subsequent enzymatic hydrolysis with Cellic® CTec2, it was possible to enhance the digestibility of corn stover and to achieve 65.4% of the available carbohydrates at the lowest up to 89% at the highest conditions as monomers after enzymatic hydrolysis. Furthermore, the enzymatic degradation could be optimized with a subsequent alkaline lignin extraction, especially at low severities under three. After this combined pretreatment, it was possible to enhance the enzymatic digestibility and to achieve up to 106.4% of the available carbohydrates at the lowest conditions and up to 102.2% at the highest temperature as monomers after following enzymatic hydrolysis, compared to analytical acid hydrolysis. Regarding the utilization of the arising lignin after extraction, the lignin was characterized with regard to the molar mass and carbohydrate impurities. In this context, it was found that higher amounts and higher purities of lignin can be attained after pretreatment at severities higher than four.

Keywords