BMC Cancer (Feb 2022)

Integrated analysis of the prognostic and oncogenic roles of OPN3 in human cancers

  • Wei Zhang,
  • Jianglong Feng,
  • Wen Zeng,
  • Zhi He,
  • Wenxiu Yang,
  • Hongguang Lu

DOI
https://doi.org/10.1186/s12885-022-09219-7
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Emerging cell- or tissue-based evidence has demonstrated that opsin 3 (OPN3) mediates a variety of pathological processes affecting tumorigenesis, clinical prognosis, and treatment resistance in some cancers. However, a comprehensive analysis of OPN3 across human cancers is unavailable. Therefore, a pancancer analysis of OPN3 expression was performed and its potential oncogenic roles were explored. Methods The expression and characterization of OPN3 were evaluated among 33 tumour types using The Cancer Genome Atlas (TCGA) dataset. Additionally, the OPN3 RNA level and overall survival (OS) in relation to its expression level in 33 cancer types were estimated. Based on the analysis above, 347 samples from 5 types of tumours were collected and detected for the protein expression of OPN3 by immunohistochemical assay. Furthermore, the biological role of OPN3 in cancers was evaluated via gene set enrichment analysis (GSEA). Results The OPN3 expression level was heterogeneous across cancers, yet a remarkable difference existed between OPN3 expression and patient overall survival among the 7 types of these 33 cancers. Consistently, a high immunohistochemical score of OPN3 was significantly associated with a poor prognosis among patients with 5 types of tumours. Additionally, OPN3 expression was involved in cancer-associated fibroblast infiltration in 5 types of tumours, and promoter hypomethylation of OPN3 was observed in 3 tumour types. Additionally, OPN3 protein phosphorylation sites of Tyr140 and Ser380 were identified via posttranscriptional modification analysis, suggesting the potential function of Tyr140 and Ser380 phosphorylation in tumorigenesis. Furthermore, the enrichment analysis was mainly concentrated in C7orf70, C7orf25 and the “ribosome” pathway by GSEA in 5 types of cancers, indicating that OPN3 might affect tumorigenesis and progression by regulating gene expression and ribosome biogenesis. Conclusions High expression of OPN3 was significantly associated with a poor clinical prognosis in five types of cancers. Its molecular function was closely associated with the ribosomal pathway.

Keywords