Molecular Therapy: Oncolytics (Mar 2023)

Reprogramming the tumor microenvironment leverages CD8+ T cell responses to a shared tumor/self antigen in ovarian cancer

  • Anna Mistarz,
  • Marta Winkler,
  • Sebastiano Battaglia,
  • Song Liu,
  • Alan Hutson,
  • Hanna Rokita,
  • Andrea Gambotto,
  • Kunle O. Odunsi,
  • Prashant K. Singh,
  • A.J. Robert McGray,
  • Jianmin Wang,
  • Danuta Kozbor

Journal volume & issue
Vol. 28
pp. 230 – 248

Abstract

Read online

Tumor antigen-driven responses to weakly immunogenic self-antigens and neoantigens directly affect treatment efficacy following immunotherapy. Using orthotopically grown SV40 T antigen+ ovarian carcinoma in antigen-naive wild-type or TgMISIIR-TAg-Low transgenic mice expressing SV40 T antigen as a self-antigen, we investigated the impact of CXCR4-antagonist-armed oncolytic virotherapy on tumor progression and antitumor immunity. Immunostaining and single-cell RNA sequencing analyses of the peritoneal tumor microenvironment of untreated tumors in syngeneic wild-type mice revealed the presence of SV40 T antigen-specific CD8+ T cells, a balanced M1/M2 transcriptomic signature of tumor-associated macrophages, and immunostimulatory cancer-associated fibroblasts. This contrasted with polarized M2 tumor-associated macrophages, immunosuppressive cancer-associated fibroblasts, and poor immune activation in TgMISIIR-TAg-Low mice. Intraperitoneal delivery of CXCR4-antagonist-armed oncolytic vaccinia virus led to nearly complete depletion of cancer-associated fibroblasts, M1 polarization of macrophages, and generation of SV40 T antigen-specific CD8+ T cells in transgenic mice. Cell depletion studies revealed that the therapeutic effect of armed oncolytic virotherapy was dependent primarily on CD8+ cells. These results demonstrate that targeting the interaction between immunosuppressive cancer-associated fibroblasts and macrophages in the tolerogenic tumor microenvironment by CXCR4-A-armed oncolytic virotherapy induces tumor/self-specific CD8+ T cell responses and consequently increases therapeutic efficacy in an immunocompetent ovarian cancer model.

Keywords