IEEE Access (Jan 2019)
A Deep Learning Method With Filter Based Feature Engineering for Wireless Intrusion Detection System
Abstract
In recent years, the increased use of wireless networks for the transmission of large volumes of information has generated a myriad of security threats and privacy concerns; consequently, there has been the development of a number of preventive and protective measures including intrusion detection systems (IDS). Intrusion detection mechanisms play a pivotal role in securing computer and network systems; however, for various IDS, the performance remains a major issue. Moreover, the accuracy of existing methodologies for IDS using machine learning is heavily affected when the feature space grows. In this paper, we propose a IDS based on deep learning using feed forward deep neural networks (FFDNNs) coupled with a filter-based feature selection algorithm. The FFDNN-IDS is evaluated using the well-known NSL-knowledge discovery and data mining (NSL-KDD) dataset and it is compared to the following existing machine learning methods: support vectors machines, decision tree, K-Nearest Neighbor, and Naïve Bayes. The experimental results prove that the FFDNN-IDS achieves an increase in accuracy in comparison to other methods.
Keywords