International Journal of Nanomedicine (Feb 2013)
Preparation and in vitro and in vivo characterization of cyclosporin A-loaded, PEGylated chitosan-modified, lipid-based nanoparticles
Abstract
Ling Zhang,1,2,# Zhi-Liang Zhao,3,# Xiao-Hong Wei,1 Jin-Hua Liu21School of Medicine, 2College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 3Tongde Hospital of Zhejiang Province, Hangzhou, People’s Republic of China #These authors contributed equally to this paperBackground and methods: A new cyclosporin A-loaded, PEGylated chitosan-modified lipid-based nanoparticle was developed to improve upon the formulation of cyclosporin A. PEGylated chitosan, synthesized in three steps using mild reaction conditions, was used to modify the nanoparticles. Cyclosporin A-loaded, PEGylated chitosan-modified nanoparticles were prepared using an emulsification/solvent evaporation method. The drug content and encapsulation efficiency of the cyclosporin A-loaded, PEGylated chitosan-modified nanoparticles were measured by high-performance liquid chromatography. The average size of the nanoparticles was determined by transmission electron microscopy and dynamic light scattering. The pharmacokinetic behavior of the nanoparticles was investigated in rabbits after intravenous injection. Cyclosporin A concentrations in a whole blood sample were analyzed by high-performance liquid chromatography using tamoxifen as the internal standard. The pharmacokinetic parameters were calculated using the 3p87 software program.Results: Fourier transform infrared spectroscopy and nuclear magnetic resonance confirmed the structure of PEGylated chitosan. The drug content and encapsulation efficiency of the cyclosporin A-loaded, PEGylated chitosan-modified nanoparticles were 37.04% and 69.22%, respectively. The average size of the nanoparticles was 89.4 nm. The nanoparticles released 30% cyclosporin A-loaded in 48 hours in vitro, with no initial burst release. The mode of release in vitro was prone to bulk erosion. The in vivo results showed the biological half-life of the elimination phase (t1/2β) of the nanoparticles was 21 times longer than that of the cyclosporin A solution, and the area under the curve for the nanoparticles was 25.8 times greater than that of the cyclosporin A solution.Conclusion: Modification of PEGylated chitosan prolonged the retention time of the nanoparticles in the circulatory system and improved the bioavailability of cyclosporin A.Keywords: nanoparticle, PEGylation, chitosan, pharmacokinetics, cyclosporin A, long circulation, bioavailability