Energies (Aug 2024)

A Hydrogen-Integrated Aggregator Model for Managing the Point of Common Coupling Congestion in Green Multi-Microgrids

  • Farshad Khavari,
  • Jay Liu

DOI
https://doi.org/10.3390/en17164018
Journal volume & issue
Vol. 17, no. 16
p. 4018

Abstract

Read online

The rapid expansion of energy storage integration has not provided sufficient time to strengthen and expand the transmission and distribution network. This issue can lead to PCC congestion in green multi-microgrid (MMG) systems. In these systems, microgrids operate independently and connect to the grid at a point of common coupling (PCC) without sharing operational data with neighboring microgrids. To address this issue, this paper proposes a bi-level optimization model designed to reschedule hydrogen storage systems. The first level allows each microgrid to optimize its energy transactions with the grid and communicates any unbalanced energy to the second level, where a hydrogen management system (HMS) is introduced. The HMS optimizes virtual hydrogen prices to address the PCC congestion and maximize the MMG’s profit. These virtual prices are then sent to the first level, allowing the microgrids to reschedule the hydrogen storage systems based on these virtual prices. Finally, the MMG’s profit is fairly allocated among the microgrids using the Shapley value method. The proposed method’s effectiveness is demonstrated using simulations, which show a six percent increase in MMG profit compared to scenarios that only share PCC capacity while maintaining the data privacy of all the involved microgrids.

Keywords