Journal of Marine Science and Engineering (Jan 2024)

Intelligent Task Allocation and Planning for Unmanned Surface Vehicle (USV) Using Self-Attention Mechanism and Locking Sweeping Method

  • Jing Luo,
  • Yuhang Zhang,
  • Jiayuan Zhuang,
  • Yumin Su

DOI
https://doi.org/10.3390/jmse12010179
Journal volume & issue
Vol. 12, no. 1
p. 179

Abstract

Read online

The development of intelligent task allocation and path planning algorithms for unmanned surface vehicles (USVs) is gaining significant interest, particularly in supporting complex ocean operations. This paper proposes an intelligent hybrid algorithm that combines task allocation and path planning to improve mission efficiency. The algorithm introduces a novel approach based on a self-attention mechanism (SAM) for intelligent task allocation. The key contribution lies in the integration of an adaptive distance field, created using the locking sweeping method (LSM), into the SAM. This integration enables the algorithm to determine the minimum practical sailing distance in obstacle-filled environments. The algorithm efficiently generates task execution sequences in cluttered maritime environments with numerous obstacles. By incorporating a safety parameter, the enhanced SAM algorithm adapts the dimensional influence of obstacles and generates paths that ensure the safety of the USV. The algorithms have been thoroughly evaluated and validated through extensive computer-based simulations, demonstrating their effectiveness in both simulated and practical maritime environments. The results of the simulations verify the algorithm’s capability to optimize task allocation and path planning, leading to improved performance in complex and obstacle-laden scenarios.

Keywords