NeuroImage (Jun 2022)

Pre-stimulus alpha-band phase gates early visual cortex responses

  • Wei Dou,
  • Audrey Morrow,
  • Luca Iemi,
  • Jason Samaha

Journal volume & issue
Vol. 253
p. 119060

Abstract

Read online

Alpha-band (8-13 Hz) oscillations have been shown to phasically inhibit perceptual reports in human observers, yet the underlying physiological mechanism of this effect is debated. According to contrasting models, based primarily on animal experiments, alpha activity is thought to either originate from specialized cells in the visual thalamus and periodically inhibit the relay of visual information to the primary visual cortex (V1) in a feedforward manner, or to propagate from higher visual areas back to V1 in a feedback manner. Human neurophysiological evidence in favor of either hypothesis, both, or neither, has been limited. To help address this issue, we explored the link between pre-stimulus alpha phase and visual electroencephalography (EEG) responses thought to arise from afferent input onto human V1. Specially-designed visual stimuli were used to elicit large amplitude C1 event-related potentials (ERP), with polarity, topography, and timing indicative of striate genesis. Single-trial circular-linear associations between pre-stimulus phase and post-stimulus global field power (GFP) during the C1 time window revealed significant effects peaking in the alpha frequency band. Control analyses ruling out the potential confound of post-stimulus data bleeding into the pre-stimulus window demonstrated that GFP amplitude decreases as pre-stimulus alpha phase deviates from an individual's preferred phase. These findings demonstrate an early locus – suggesting that the phase of pre-stimulus alpha oscillations could modulate visual processing by gating the feedforward flow of sensory input between the thalamus and V1, although other models are potentially compatible.

Keywords