Open Life Sciences (Jan 2016)
The complete mitochondrial genomes of two weevils, Eucryptorrhynchus chinensis and E. brandti: conserved genome arrangement in Curculionidae and deficiency of tRNA-Ile gene
Abstract
The weevils Eucryptorrhynchus chinensis and Eucryptorrhynchus brandti (Coleoptera: Curculionidae), are two of the most important pests of the tree-of-heaven, Ailanthus altissima, which is found throughout China. In this study, the complete mitogenomes of the two weevils have been sequenced using Illumina HiSeqTM 2000. The mitogenomes of E. chinensis and E. brandti are 15,628bp and 15,597bp long with A+T contents of 77.7% and 76.6%, respectively. Both species have typical circular mitochondrial genomes that encode 36 genes. Except the deficiency of tRNA-Ile, the gene composition and order of E. chinensis and E. brandti are identical to the inferred ancestral gene arrangement of insects. In both mitochondrial genomes, the start codons for COI and ND1 are AAT and TTG, respectively. A5bp motif (TACTA) is detected in intergenic region between the tRNA-Ser (UCN) and ND1 genes. The ATP8/ATP6 and ND4L/ND4 gene pairs appear to overlap four or seven nucleotides (ATAA/ATGATAA) in different reading frames. The complete sequences of AT-rich region have two regions including tandem repeats. The study identifies useful genetic markers for studying the population genetics, molecular identification and phylogeographics of Eucryptorrhynchus weevils. The features of the mitochondrial genomes are expected to be valuable in
Keywords