Soil Science Annual (Dec 2019)

Development of the limit values of micronutrient deficiency in soil determined using Mehlich 3 extractant for Polish soil conditions. Part II. Rapeseed

  • Stanisławska-Glubiak Ewa,
  • Korzeniowska Jolanta,
  • Lipiński Wojciech

DOI
https://doi.org/10.2478/ssa-2019-0029
Journal volume & issue
Vol. 70, no. 4
pp. 324 – 330

Abstract

Read online

The aim of the study was to develop limit values for low microelement concentration in the soil, determined with the use of Mehlich 3 extractant for assessing their deficits in rapeseed crops. The values were prepared on the basis of 1944 fields with rapeseed, covering the whole Poland. In 2017, the samplers of Polish agro-chemical laboratories took soil samples and corresponding plant samples at the BBCH 30/31 stage. In the plant samples, the concentration of microelements was determined, and in the soil samples, apart from microelements, also pH, texture and the concentration of organic carbon and available phosphorus, were determined. Moreover, for each field, data on rapeseed yield were collected. Limit values were determined by two independent methods: 1) the method of regression equations and 2) the so-called high yield method. In the first case, the limit microelement concentration in the soil was calculated from the equation describing the relationship between the R/G bioaccumulation coefficient and a specific soil feature (n=1944). The bioaccumulation coefficient is a quotient of the concentration of a microelement in a plant (R) and its concentration in the soil determined by the Mehlich 3 (G) method. Limit values were calculated after substituting the critical concentration of microelements in the plant (R) to the equation, and subsequently, an appropriate conversion of the equation. The second method was based on the separation of a group of high yields ≥4.0 t ha−1 (n=755) from the whole data set. Then in this group, the lower quintiles (QU1) were calculated for the concentration of individual microelements in the soil determined in Mehlich 3 extract and adopted as limit values. It was found that QU1 is a good indicator of the lowest microelement concentration in the soil at which a yield of at least 4.0 t ha−1 can be obtained. The final limit values were worked out by averaging the values calculated by the equations and high yield method and their appropriate correction. In the combined soil sample collections for wheat and rapeseed (n=3865), the values were checked by evaluating the percentage of soils with microelement shortage separately for rape and wheat. The results of this evaluation were compared with the evaluation using the old system based on the 1 M HCl, which did not take into account the plant species.

Keywords