Nanomaterials (Nov 2021)
Permeability of a Zinc-Methacrylate-Based Self-Polishing Copolymer for Use in Antifouling Coating Materials by Molecular Dynamics Simulations
Abstract
Molecular dynamics simulations were used to investigate the solubility and permeability of H2O in a self-polishing copolymer (SPC) with two zinc methacrylate (ZMA) contents (Z2: 2 mol% ZMA; Z16: 16 mol% ZMA) and ethyl acrylate, methyl methacrylate, 2-methoxyethyl acrylate, and butyl acrylate as antifouling agents. Water was found to be more soluble in hydrated Z16 than Z2 because ZMA interacts strongly with H2O. In contrast, the diffusion coefficient of H2O in Z16 is lower than that of Z2 because H2O molecules are more constrained in the former due to strong ZMA/H2O interactions. Z16 was found to be significantly more permeable than Z2 over time. The SPC hydrated region in Z2 tends to expand toward the SPC region, while the analogous region in Z16 swelled toward both the SPC and H2O regions to leach SPC owing to the higher permeation of H2O into the SPC. These results reveal that H2O permeability can be controlled by adjusting the ZMA content, which provides insight into antifouling performance.
Keywords