Cancers (Aug 2018)

miRNA-205 Nanoformulation Sensitizes Prostate Cancer Cells to Chemotherapy

  • Prashanth K. B. Nagesh,
  • Pallabita Chowdhury,
  • Elham Hatami,
  • Vijaya K. N. Boya,
  • Vivek K. Kashyap,
  • Sheema Khan,
  • Bilal B. Hafeez,
  • Subhash C. Chauhan,
  • Meena Jaggi,
  • Murali M. Yallapu

DOI
https://doi.org/10.3390/cancers10090289
Journal volume & issue
Vol. 10, no. 9
p. 289

Abstract

Read online

The therapeutic application of microRNA(s) in the field of cancer has generated significant attention in research. Previous studies have shown that miR-205 negatively regulates prostate cancer cell proliferation, metastasis, and drug resistance. However, the delivery of miR-205 is an unmet clinical need. Thus, the development of a viable nanoparticle platform to deliver miR-205 is highly sought. A novel magnetic nanoparticle (MNP)-based nanoplatform composed of an iron oxide core with poly(ethyleneimine)-poly(ethylene glycol) layer(s) was developed. An optimized nanoplatform composition was confirmed by examining the binding profiles of MNPs with miR-205 using agarose gel and fluorescence methods. The novel formulation was applied to prostate cancer cells for evaluating cellular uptake, miR-205 delivery, and anticancer, antimetastasis, and chemosensitization potentials against docetaxel treatment. The improved uptake and efficacy of formulations were studied with confocal imaging, flow cytometry, proliferation, clonogenicity, Western blot, q-RT-PCR, and chemosensitization assays. Our findings demonstrated that the miR-205 nanoplatform induces significant apoptosis and enhancing chemotherapeutic effects in prostate cancer cells. Overall, these study results provide a strong proof-of-concept for a novel nonviral-based nanoparticle protocol for effective microRNA delivery to prostate cancer cells.

Keywords