The Lectin-Like Domain of Thrombomodulin Inhibits β1 Integrin-Dependent Binding of Human Breast Cancer-Derived Cell Lines to Fibronectin
Eiji Kawamoto,
Nodoka Nago,
Takayuki Okamoto,
Arong Gaowa,
Asami Masui-Ito,
Yuichi Akama,
Samuel Darkwah,
Michael Gyasi Appiah,
Phyoe Kyawe Myint,
Gideon Obeng,
Atsushi Ito,
Siqingaowa Caidengbate,
Ryo Esumi,
Takanori Yamaguchi,
Eun Jeong Park,
Hiroshi Imai,
Motomu Shimaoka
Affiliations
Eiji Kawamoto
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Nodoka Nago
Department of Clinical Nutrition, Suzuka University of Medical Science, 1001-1 Kishioka-cho, Suzuka-city, Mie 510-0293, Japan
Takayuki Okamoto
Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
Arong Gaowa
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Asami Masui-Ito
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Yuichi Akama
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Samuel Darkwah
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Michael Gyasi Appiah
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Phyoe Kyawe Myint
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Gideon Obeng
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Atsushi Ito
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Siqingaowa Caidengbate
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Ryo Esumi
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Takanori Yamaguchi
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Eun Jeong Park
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Hiroshi Imai
Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Motomu Shimaoka
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
Thrombomodulin is a molecule with anti-coagulant and anti-inflammatory properties. Recently, thrombomodulin was reported to be able to bind extracellular matrix proteins, such as fibronectin and collagen; however, whether thrombomodulin regulates the binding of human breast cancer-derived cell lines to the extracellular matrix remains unknown. To investigate this, we created an extracellular domain of thrombomodulin, TMD123-Fc, or domain deletion TM-Fc proteins (TM domain 12-Fc, TM domain 23-Fc) and examined their bindings to fibronectin in vitro by ELISA. The lectin-like domain of thrombomodulin was found to be essential for the binding of the extracellular domain of thrombomodulin to fibronectin. Using a V-well cell adhesion assay or flow cytometry analysis with fluorescent beads, we found that both TMD123-Fc and TMD12-Fc inhibited the binding between β1 integrin of human breast cancer-derived cell lines and fibronectin. Furthermore, TMD123-Fc and TMD12-Fc inhibited the binding of activated integrins to fibronectin under shear stress in the presence of Ca2+ and Mg2+ but not under strong integrin-activation conditions in the presence of Mg2+ without Ca2+. This suggests that thrombomodulin Fc fusion protein administered exogenously at a relatively early stage of inflammation may be applied to the development of new therapies that inhibit the binding of β1 integrin of breast cancer cell lines to fibronectin.