地质科技通报 (Jul 2024)

Determination method of fracture aperture based on three-dimensional fracture network simulation and water injection tests

  • Jinbo CHENG,
  • Lu XIA,
  • Qingchun YU

DOI
https://doi.org/10.19509/j.cnki.dzkq.tb20230128
Journal volume & issue
Vol. 43, no. 4
pp. 262 – 272

Abstract

Read online

Objective The aperture of fractures (hydraulic equivalent aperture of fractures) of rock fractures is one of the key mechanical parameters of rocks.It has significant indicative significance in water conservancy projects, geological surveys and so on.At present, large-scale test methods such as cross-hole tests are often used to obtain the fracture apertures of deep rock masses in the field, but this method is rarely used many times in projects, and it is difficult to analyse the spatial variation in the aperture of fractures. This spatial variation is precisely what we need to focus on and discuss because it affects the accurate definition and application of the hydraulic equivalent fracture aperture in engineering applications. Methods In this paper, taking the surrounding rock of an underground power station cavern on the right bank of the Three Gorges Dam as an example, a new inversion method for determining the hydraulic equivalent aperture of fractures is proposed by using conventional single-hole water injection test data and three-dimensional fracture network simulation. The statistical data obtained from the measured fracture cataloguing data are used to carry out random simulation of fracture characteristics, and a three-dimensional discrete fracture network seepage model connected with water injection test boreholes is constructed to fit the relationship between the single-hole steady-state flow rate and injection. The hydraulic equivalent apertures of fractures at different depths of rocks are inverted. Results The results show that the hydraulic equivalent aperture of fractures in the research area is generally 0.07-0.30 mm, which confirms to the statistical characteristics of the log-normal distribution. Most of the inverted hydraulic equivalent apertures of fractures in boreholes decrease exponentially with burial depth, while a few boreholes show strong randomness of the hydraulic equivalent aperture of fractures and no obvious change with burial depth. Conclusion Compared to those of traditional methods, the inversion results of this approach are significantly different and require further verification.

Keywords