Land (Nov 2023)
Assessing the Effects of Subjective and Objective Measures on Housing Prices with Street View Imagery: A Case Study of Suzhou
Abstract
The price of a house is affected by both the subjective and objective factors of the street environment in a neighborhood. However, the relationships between these factors and housing prices are not fully understood. Street view imagery (SVI) has recently emerged as a new data source for housing price studies. The SVI contains both objective and subjective information and can be used to extract objective measurements describing the physical environment and subjective measurements depicting human perceptions. Compared to conventional methods, there is consistency between subjective and objective information extracted from SVIs, and the two types of information are acquired from the perspective of the human visual perceptual system. Therefore, using both objective and subjective information extracted from street view images to study their relationship with housing prices has several advantages. In this study, focusing on the city of Suzhou, China, we extracted subjective perception and objective view indices from SVIs and systematically assessed their effects on housing prices. The global ordinary least squares (OLS) regression model and the local geographically weighted regression (GWR) model were used to model the correlations between these measures and housing prices. The OLS reveals that overall objective measures have stronger explanatory power, and built environment factors have a greater impact on housing prices. GWR shows that subjective factors can explain more variance in housing prices on the local scale and that home buyers care more about the subjective perceptions of the neighborhood’s surroundings. The map of the GWR local coefficients demonstrates that the perception indicators have both positive and negative effects on housing prices in different places. In addition, a Monte Carlo test was performed to verify the spatially varying relationships between these measures. Our findings provide important references for urban designers and guide various applications, such as safe neighborhood design and sustainable city planning.
Keywords