Remote Sensing (Apr 2022)

Improving the Assimilation of Enhanced Atmospheric Motion Vectors for Hurricane Intensity Predictions with HWRF

  • Xu Lu,
  • Benjamin Davis,
  • Xuguang Wang

DOI
https://doi.org/10.3390/rs14092040
Journal volume & issue
Vol. 14, no. 9
p. 2040

Abstract

Read online

The initial conditions for hurricanes are difficult to improve due to the lack of inner-core observations over the ocean. An enhanced atmospheric motion vectors (AMVs) dataset from the Cooperative Institute for Meteorological Satellite Studies (CIMSS) has recently become available and covers the inner-core region of hurricanes. This study tries to find an optimal data assimilation (DA) configuration to better utilize the observations for the Hurricane Weather Research and Forecasting (HWRF) model with hurricane Irma (2017). The results show that (a) without vortex relocation (VR), the hourly three-dimensional ensemble–variational (3DEnVar) outperforms the 6-hourly 3DEnVar DA configuration in almost all aspects, except for long-term track predictions. The assimilation of inner-core AMVs further improves the corresponding intensity forecasts for both hourly and 6-hourly 3DEnVar DA. (b) The 6-hourly 3DEnVar DA predictions with VR can be significantly improved upon their non-VR counterparts. However, VR can be detrimental to hourly 3DEnVar minimum sea level pressure (MSLP) predictions due to the spuriously enhanced upper-level warm core. The improvements from the assimilation of additional inner-core AMVs are thus limited under hourly VR. Reducing VR frequency can reduce the detrimental effects of hourly 3DEnVar. (c) An updated observation error profile for the enhanced AMVs benefits the hourly 3DEnVar DA more than the 6-hourly 3DEnVar DA.

Keywords