Biomedicine & Pharmacotherapy (May 2021)

Long-term silk peptide intake promotes skeletal muscle mass, reduces inflammation, and modulates gut microbiota in middle-aged female rats

  • Sunmin Park,
  • Heng Yuan,
  • Ting Zhang,
  • Xuangao Wu,
  • Shao Kai Huang,
  • Song Mee Cho

Journal volume & issue
Vol. 137
p. 111415

Abstract

Read online

Aging alters body composition to induce sarcopenia, particularly in women, but the mechanism remains unclear. We hypothesized that silk peptide(SP) intake could prevent an age-related decrease in muscle mass and strength in middle-aged female rats and explored the action mechanism. After the acute intake of SP and defatted soybean peptides, serum concentrations of amino acids were measured in ten middle-aged rats in each group. Forty 12-month-old female Sprague-Dawley rats were fed a high-fat and high-carbohydrate diet for 12 weeks including 0.5 g casein/kg body weight(BW)/day(Aged), 0.15 g SP plus 0.35 g casein/kg BW/day(Low-SP), 0.5 g SP/kg BW/day(High-SP), or 40 mg metformin plus 0.5 g casein/kg BW/day(Metformin). Ten rats aged 7-week old(Young) had the same treatment as the Aged-group. The body composition, grip strength, glucose metabolism, intestinal tissue morphology, and gut microbiota were also determined. After an acute consumption, total amino acids were more quickly absorbed and maintained at higher levels in SP than soybean peptides. Lean body mass(LBM) and grip strength were lower in the Aged-group than the Young and Low-SP groups, and the High-SP regimen increased these parameters as much as the Young-group. Serum concentrations and mRNA expression of TNF-α in the gastrocnemius and quadriceps muscles were higher in the Aged-group than the Young-group, whereas SP intake reduced their serum levels and skeletal muscles. Glucose and insulin tolerance indicated that insulin resistance was elevated in the Aged-group compared to the Young-group, while Low-SP and High-SP alleviated them as much as the Young-group. High-SP increased serum propionate and butyrate concentrations compared to the Aged-group. SP intake increased the relative abundance of Bacteroides and Prevotella and decreased Blautia and Clostridium in the feces. In conclusion, SP intake protects against a decrease in lean body mass and grip strength in middle-aged female rats. The protection was partly related to maintaining higher serum concentrations of total amino acids after SP consumption and decreasing inflammation and insulin resistance through gut microbiota modulation.

Keywords