PLoS ONE (Jan 2023)
Sex-dimorphic expression of extracellular matrix genes in mouse bone marrow neutrophils.
Abstract
The mammalian innate immune system is sex-dimorphic. Neutrophils are the most abundant leukocyte in humans and represent innate immunity's first line of defense. We previously found that primary mouse bone marrow neutrophils show widespread sex-dimorphism throughout life, including at the transcriptional level. Extracellular matrix [ECM]-related terms were observed among the top sex-dimorphic genes. Since the ECM is emerging as an important regulator of innate immune responses, we sought to further investigate the transcriptomic profile of primary mouse bone marrow neutrophils at both the bulk and single-cell level to understand how biological sex may influence ECM component expression in neutrophils throughout life. Here, using curated gene lists of ECM components and unbiased weighted gene co-expression network analysis [WGCNA], we find that multiple ECM-related gene sets show widespread female-bias in expression in primary mouse neutrophils. Since many immune-related diseases (e.g., rheumatoid arthritis) are more prevalent in females, our work may provide insights into the pathogenesis of sex-dimorphic inflammatory diseases.