Electronic Journal of Qualitative Theory of Differential Equations (May 2020)

Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations

  • Fang Liu,
  • Hua Luo,
  • Guowei Dai

DOI
https://doi.org/10.14232/ejqtde.2020.1.29
Journal volume & issue
Vol. 2020, no. 29
pp. 1 – 13

Abstract

Read online

In this paper, we shall study unilateral global bifurcation phenomenon for the following homogeneous Kirchhoff type problem \begin{equation*} \begin{cases} -\left(\int_0^1 \left\vert u'\right\vert^2\,dx\right)u''=\lambda u^3+h(x,u,\lambda)&\text{in}\,\, (0,1),\\ u(0)=u(1)=0. \end{cases} \end{equation*} As application of bifurcation result, we shall determine the interval of $\lambda$ in which there exist nodal solutions for the following homogeneous Kirchhoff type problem \begin{equation*} \begin{cases} -\left(\int_0^1 \left\vert u'\right\vert^2\,dx\right) u''=\lambda f(x,u)&\text{in}\,\, (0,1),\\ u(0)=u(1)=0, \end{cases} \end{equation*} where $f$ is asymptotically cubic at zero and infinity. To do this, we also establish a complete characterization of the spectrum of a homogeneous nonlocal eigenvalue problem.

Keywords