Intelligent Medicine (Feb 2024)
A computed tomography-based radiomic model for the prediction of strangulation risk in patients with acute intestinal obstruction
Abstract
Background: We created and validated a computed tomography (CT)-based radiomic model using both clinical factors and the radiomic signature for assessing the strangulation risk of acute intestinal obstruction. This would assist surgeons in accurately predicting intestinal ischemia and strangulation in patients with intestinal obstruction. Methods: We recruited 289 patients with acute intestinal obstruction admitted in the Affiliated Hospital of Qingdao University from January 2019 to February 2022. The patients were allocated to a training (n = 226) and validation cohort (n = 63). Radiomic features were collected from CT images, and the radiomic signature was extracted and used to calculate a radiomic score (Rad-score). A nomogram was constructed using the clinical features and the Rad-score, and the performance of the clinical, radiomics, and nomogram models was assessed in the two cohorts. Results: Six robust features were used to construct the radiomic signature. The nomogram incorporating hemoglobin levels, C-reactive protein levels, American Society of Anesthesiologists score, time of obstruction, CT image of mesenteric fluid (P < 0.05), and the signature demonstrated good predictive ability for intestinal ischemia in patients with acute intestinal obstruction, with areas under the curve of 0.892 (95% confidence interval, 0.837–0.947) and 0.781 (95% confidence interval, 0.619–0.944) for the training and validation sets, respectively. The decision curve analysis showed that this model outperformed the clinical and radiomic signature models. Conclusion: The radiomic nomogram may effectively predict intestinal ischemia in patients with acute intestinal disease and may assist clinical decision-making.