Geosciences (Sep 2021)
Enhanced Steady-State Solution of the Infinite Moving Line Source Model for the Thermal Design of Grouted Borehole Heat Exchangers with Groundwater Advection
Abstract
The objective of this study is to assess the suitability of the analytical infinite moving line source (MLS) model in determining the temperature of vertical grouted borehole heat exchangers (BHEs) for steady-state conditions when horizontal groundwater advection is present. Therefore, a numerical model of a grouted borehole is used as a virtual reality for further analysis. As a result of the first analysis, it has been discovered that established analytical methods to determine the borehole thermal resistance as a mean value over the borehole radius can also be applied to BHEs with groundwater advection. Furthermore, the deviation between a finite MLS and the infinite MLS is found to be only less than 5% for BHEs of a depth of 30 m or more, and Péclet numbers greater than 0.05. Finally, the accuracy of the temperature change calculated with the infinite MLS model at the radius of the borehole wall compared to the temperature change at a numerically simulated grouted borehole is addressed. A discrepancy of the g-functions resulting in a poor dimensioning of BHEs by the infinite MLS model is revealed, which is ascribed to the impermeable grouting material of the numerical model. A correction function has been developed and applied to the infinite MLS model for steady-state conditions to overcome this discrepancy and to avoid poor dimensioning of BHEs.
Keywords