PLoS ONE (Jan 2019)

Comparisons of early vascular reactions in biodegradable and durable polymer-based drug-eluting stents in the porcine coronary artery.

  • Takeshi Ijichi,
  • Gaku Nakazawa,
  • Sho Torii,
  • Hirofumi Nagamatsu,
  • Ayako Yoshikawa,
  • Junko Souba,
  • Atsushi Isobe,
  • Hitomi Hagiwara,
  • Yuji Ikari

DOI
https://doi.org/10.1371/journal.pone.0209841
Journal volume & issue
Vol. 14, no. 1
p. e0209841

Abstract

Read online

Current drug-eluting stents have abluminal polymer coating; however, thrombus formation in these compared with that in uniformly coated stents remains controversial. We evaluated thrombus formation and early endothelialization after using abluminal biodegradable polymer-coated sirolimus- (BP-SES), and everolimus-eluting stents (BP-EES) versus a durable polymer-coated everolimus-eluting stent (DP-EES) in an in vivo setting. BP-SES, BP-EES, and DP-EES (n = 6 each) were implanted in coronary arteries of 12 mini-pigs that were then sacrificed after 7 and 10 days. Stents were stained with hematoxylin and eosin, and a combined Verhoeff and Masson trichrome stain. Areas of fibrin deposition were digitally detected and measured with off-line morphometric software. Stents were investigated for re-endothelialization by transmission electron microscopy. At 7 days, histological analysis revealed the lowest area of fibrin deposition in BP-SES (BP-SES vs. BP-EES vs. DP-EES; 0.10 ± 0.06 mm2 vs. 0.15 ± 0.07 mm2 vs. 0.19 ± 0.06 mm2, p = 0.0004). At 10 days, the area of fibrin deposition was significantly greater in DP-EES (0.13 ± 0.04 mm2 vs. 0.14 ± 0.05 mm2 vs. 0.19 ± 0.08 mm2, p = 0.007). Endothelial cells in BP-SES demonstrated a significantly greater number of tight junctions than those in DP-EES according to by transmission electron microscopy for both days (p<0.05). Various parameters, including an inflammatory reaction and neointimal formation, were comparable among the groups at 7 and 10 days. An abluminal biodegradable polymer-coated SES showed the least fibrin deposition and greatest endothelial cell recovery at an early stage following implantation in the coronary arteries of mini-pigs.