BioResources (Apr 2014)

Development of Binderless Fiberboards from Steam-exploded and Oxidized Oil Palm Wastes

  • Elizabeth Mejía Henao,
  • Germán C. Quintana,
  • Babatunde O. Ogunsile

DOI
https://doi.org/10.15376/biores.9.2.2922-2936
Journal volume & issue
Vol. 9, no. 2
pp. 2922 – 2936

Abstract

Read online

Binderless fiberboards were made from oil palm (Elaeis guineensis) empty fruit bunches with two treatments: steam explosion and Fenton reagent oxidation. Fiberboards were prepared with a targeted density of 1.20 g/cm3 and a thickness of 4 mm. A factorial experimental design 22 with two center repetitions and one repetition was applied for each treatment. The oil palm waste was oxidized with Fenton reagent using a H2O2/Fe2+ ratio of 2%/0.2% to 4%/0.4% and a pressing temperature of 170 to 190 °C. Steam explosion was carried out at a severity factor of 3.5 to 4.0 at the same pressing temperature. Both treatments were examined under two major response variables: mechanical properties (modulus of rupture, MOR, and modulus of elasticity, MOE) and physical properties (thickness swelling, TS, and water absorption, WA). Steam-exploded samples developed better physico-mechanical properties than those that underwent Fenton reagent oxidation. The best results were obtained from fiberboards treated with the highest steam explosion design conditions (severity 4 and pressing temperature 190 °C) to give optimum values of MOE 3100.09 MPa, MOR 28.49 MPa, TS 11.80%, and WA 22.74%. Binderless fiberboards made from steam explosion-treated pulp satisfied favorably well the Colombian Standard NTC 2261.

Keywords