Microorganisms (Jan 2022)

Rhizosphere Diazotrophs and Other Bacteria Associated with Native and Encroaching Legumes in the Succulent Karoo Biome in South Africa

  • Esther K. Muema,
  • Emma T. Steenkamp,
  • Stephanus N. Venter

DOI
https://doi.org/10.3390/microorganisms10020216
Journal volume & issue
Vol. 10, no. 2
p. 216

Abstract

Read online

Total and diazotrophic bacteria were assessed in the rhizosphere soils of native and encroaching legumes growing in the Succulent Karoo Biome (SKB), South Africa. These were Calobota sericea, Lessertia diffusa, Vachellia karroo, and Wiborgia monoptera, of Fabaceae family near Springbok (Northern Cape Province) and neighboring refugia of the Fynbos biome for C. sericea for comparison purposes. Metabarcoding approach using 16S rRNA gene revealed Actinobacteria (26.7%), Proteobacteria (23.6%), Planctomycetes, and Acidobacteria (10%), while the nifH gene revealed Proteobacteria (70.3%) and Cyanobacteria (29.5%) of the total sequences recovered as the dominant phyla. Some of the diazotrophs measured were assigned to families; Phyllobacteriaceae (39%) and Nostocaceae (24.4%) (all legumes), Rhodospirillaceae (7.9%), Bradyrhizobiaceae (4.6%) and Methylobacteriaceae (3%) (C. sericea, V. karroo, W. monoptera), Rhizobiaceae (4.2%; C. sericea, L. diffusa, V. Karroo), Microchaetaceae (4%; W. monoptera, V. karroo), Scytonemataceae (3.1%; L. diffusa, W. monoptera), and Pseudomonadaceae (2.7%; V. karroo) of the total sequences recovered. These families have the potential to fix the atmospheric nitrogen. While some diazotrophs were specific or shared across several legumes, a member of Mesorhizobium species was common in all rhizosphere soils considered. V. karroo had statistically significantly higher Alpha and distinct Beta-diversity values, than other legumes, supporting its influence on soil microbes. Overall, this work showed diverse bacteria that support plant life in harsh environments such as the SKB, and shows how they are influenced by legumes.

Keywords