Journal of Lipid Research (Mar 1997)
Reducing saturated fat intake is associated with increased levels of LDL receptors on mononuclear cells in healthy men and women
Abstract
Studies with animal models suggest that saturated fatty acids raise low density lipoprotein (LDL)-cholesterol levels by reducing LDL receptor-mediated clearance. To examine this directly in humans, we studied the effects of lowering dietary saturated fat on LDL-receptor abundance in peripheral mononuclear cells which reflects hepatic LDL-receptor status. Healthy males and females (n = 25) participating in the DELTA (Dietary Effects on Lipoproteins and Thrombogenic Activity) Study consumed three experimental diets in a randomized cross-over design. Diets provided 34% fat, 15% saturated fatty acids (Average American Diet); 29% fat, 9% saturated fatty acids (Step-One Diet); and 25% fat, 6% saturated fatty acids (Low SAT Diet). Peripheral mononuclear cells were isolated from blood samples collected after 6 and 8 wk. An ELISA was used to quantify LDL-receptor protein in total cell membranes. LDL-receptor abundance increased by 10.5% after the Low SAT Diet (P < 0.05). This was associated with an 11.8% decrease in serum LDL-cholesterol (P < 0.05). A linear inverse relationship was observed between the percentage change in LDL-cholesterol and the percentage change in LDL-receptor abundance (r = -0.59; P < 0.01). In addition, LDL-receptor abundance also was correlated inversely (P < 0.001) with serum levels of LDL-cholesterol (r = -0.747) and apoB (r = -0.593). In summary, reducing dietary saturated fat is associated with an increase in LDL-receptor abundance of magnitude similar to the decrease in serum LDL-cholesterol. Thus, an important mechanism by which reductions in dietary saturated fatty acids decrease LDL-cholesterol in humans is through an increase in LDL-receptor number.