Journal of Physics: Complexity (Jan 2023)
Finite-time correlations boost large voltage angle fluctuations in electric power grids
Abstract
Decarbonization in the energy sector has been accompanied by an increased penetration of new renewable energy sources in electric power systems. Such sources differ from traditional productions in that, first, they induce larger, undispatchable fluctuations in power generation and second, they lack inertia. Recent measurements have indeed reported long, non-Gaussian tails in the distribution of local voltage frequency data. Large frequency deviations may induce grid instabilities, leading in worst-case scenarios to cascading failures and large-scale blackouts. In this article, we investigate how correlated noise disturbances, characterized by the cumulants of their distribution, propagate through meshed, high-voltage power grids. For a single source of fluctuations, we show that long noise correlation times boost non-Gaussian voltage angle fluctuations so that they propagate similarly to Gaussian fluctuations over the entire network. However, they vanish faster, over short distances if the noise fluctuates rapidly. We furthermore demonstrate that a Berry–Esseen theorem leads to the vanishing of non-Gaussianities as the number of uncorrelated noise sources increases. Our predictions are corroborated by numerical simulations on realistic models of power grids.
Keywords