Applied Sciences (Feb 2024)

Study on Delaunay Triangular Mesh Delineation for Complex Terrain Based on the Improved Center of Gravity Interpolation Method

  • Wenhui Zheng,
  • Haiyun Wang,
  • Xiaofang Huang

DOI
https://doi.org/10.3390/app14041370
Journal volume & issue
Vol. 14, no. 4
p. 1370

Abstract

Read online

Wind energy resources in complex terrain are abundant. However, the default mesh division of various terrains often needs more specificity, particularly in wind resource analysis. The mesh division method can diminish computational efficiency and quality in intricate topographical conditions. This article presents a combined algorithm for generating Delaunay triangular meshes in mountainous terrains with significant variations in terrain. The algorithm considers the uncertainty of inner nodes and mesh quality, addressing both the advantages and drawbacks of the Delaunay triangular mesh. The proposed method combines the triangular center of gravity insertion algorithm with an incremental inserting algorithm. Its main goal is to enhance the quality and efficiency of mesh generation, specifically tailored for this type of complex terrain. The process involves discretizing boundary edges and contour lines to obtain point sets, screening boundary triangles, and comparing the triangle area to the average boundary triangle area, combining with the incremental inserting algorithm to generate a triangular mesh of complex terrain. After an initial debugging of the mesh, it is determined whether increasing the internal nodes is necessary to insert the triangle centers of gravity. Upon implementing actual mountainous terrain in the simulation software, a comparison of the resulting meshing demonstrates that the proposed method is highly suitable for complex mountainous terrain with significant variations in elevation. Additionally, it effectively improves the quality of the Delaunay triangular mesh and reduces the occurrence of deformed cells during the meshing process.

Keywords