Journal of King Saud University: Computer and Information Sciences (Oct 2024)
Improving embedding-based link prediction performance using clustering
Abstract
Incomplete knowledge graphs are common problem that can impair task accuracy. As knowledge graphs grow extensively, the probability of incompleteness increases. Link prediction addresses this problem, but accurate and efficient link prediction methods are needed to handle incomplete and extensive knowledge graphs. This study proposed modifications to the embedding-based link prediction using clustering to improve performance. The proposed method involves four main processes: embedding, clustering, determining clusters, and scoring. Embedding converts entities and relations into vectors while clustering groups these vectors. Selected clusters are determined based on the shortest distance between the centroid and the incomplete knowledge graph. Scoring measures relation rankings, and link prediction result is selected based on highest scores. The link prediction performance is evaluated using Hits@1, Mean Rank, Mean Reciprocal Rank and prediction time on three knowledge graph datasets: WN11, WN18RR, and FB13. The link prediction methods used are TransE and ComplEx, with BIRCH as the clustering technique and Mahalanobis for short-distance measurement. The proposed method significantly improves link prediction performance, achieving accuracy up to 98% and reducing prediction time by 99%. This study provides effective and efficient solution for improving link prediction, demonstrating high accuracy and efficiency in handling incomplete and extensive knowledge graphs.