Atmosphere (Feb 2020)

Influence of Arctic Oscillation on Frequency of Wintertime Fog Days in Eastern China

  • Peng Liu,
  • Mingyue Tang,
  • Huaying Yu,
  • Ying Zhang

DOI
https://doi.org/10.3390/atmos11020162
Journal volume & issue
Vol. 11, no. 2
p. 162

Abstract

Read online

The influence of Arctic Oscillation (AO) on the frequency of wintertime fog days in eastern China is studied based on the winter AO index, the wintertime fog-day data of national stations in China, and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1954 to 2007. The results show that heavy fog and light fog are more likely to occur during winter in eastern China with the strong interannual variability. During the winter with the positive-phase AO, there are more days of heavy fog in North China but less in South China, while light fog days become more in the whole of eastern China. It is mainly because that when AO is in the positive phase, the pressure in the polar region decreases at 500 hPa; the pressure in East Asia increases anomalously; the East Asian trough decreases; and the low-level westerly jet moves northward, preventing the northwesterly cold air from moving southward. Therefore, the whole eastern China gets warmer and wetter air, and there are more light fog days with the enhanced water vapor. However, the atmosphere merely becomes more towards unstable in South China, where the precipitation increases but the heavy fog days decreases. Nevertheless, heavy fog days increase with the water vapor in North China because of moving towards a stable atmosphere, which is formed by the anomalous downdrafts north of the precipitation center in South China. When AO is in the negative phase, the situation is basically opposite to that in the positive phase, but the variations of the corresponding fog days and circulations are weaker than those in the AO-positive-phase winter, which may be related to the nonlinear effect of AO on climate.

Keywords