Nanomaterials (Mar 2024)

Enhanced Aluminum-Ion Storage Properties of N-Doped Titanium Dioxide Electrode in Aqueous Aluminum-Ion Batteries

  • Le Jian,
  • Xibing Wu,
  • Ruichun Li,
  • Fangzheng Zhao,
  • Peng Liu,
  • Feng Wang,
  • Daosheng Liu,
  • Qingrong Yao,
  • Jianqiu Deng

DOI
https://doi.org/10.3390/nano14050472
Journal volume & issue
Vol. 14, no. 5
p. 472

Abstract

Read online

Aqueous aluminum-ion batteries (AIBs) have great potential as devices for future large-scale energy storage systems due to the cost efficiency, environmentally friendly nature, and impressive theoretical energy density of Al. However, currently, available materials used as anodes for aqueous AIBs are scarce. In this study, a novel sol-gel method was used to synthesize nitrogen-doped titanium dioxide (N-TiO2) as a potential anode material for AIBs in water. The annealed N-TiO2 showed a high discharge capacity of 43.2 mAh g−1 at a current density of 3 A g−1. Analysis of the electrode kinetics revealed that the N-TiO2 anodes exhibited rapid diffusion of aluminum ions, low resistance to charge transfer, and high electronic conductivity, enabling good rate performance. The successful implementation of a nitrogen-doping strategy provides a promising approach to enhance the electrochemical characteristics of electrode materials for aqueous AIBs.

Keywords