Soil Systems (Nov 2023)
Physico-Chemical Properties and Phosphorus Solubilization of Organomineral Fertilizers Derived from Sewage Sludge
Abstract
Sewage sludge (SS) is an organic waste that may potentially be used as a slow-release source of phosphorus (P), despite the necessity for pre-treatment and its lower P content compared to soluble mineral fertilizers. For these reasons, composted sewage sludge was used to manufacture pelletized organomineral fertilizers, by mixing it with the inorganic sources monoammonium phosphate (MAP) and AshDec® (ASD) (thermochemically incinerated SS). The fertilizers were physiochemically characterized and evaluated for their P solubilization dynamics and lability in the soil. The sources tested were as follows: organic compost of sewage sludge powder (SSC) and its pelletized form (SCP), pelletized organomineral SSC + MAP (S + MAP) and SSC + ASD (S + ASD), ASD alone, compared conventional MAP and a control (nil-P). These fertilizers were applied to columns containing 50 g of soil at the dose of 100 mg P column−1 and were leached daily with 30 mL of water or 2% citric acid for 30 days. We analyzed the leachates for pH and P content. Pelletizing process resulted in denser products and promoted more gradual P release. The organomineral S + MAP was the most water-soluble recycled source, solubilizing about 70% of the total P, while the others presented much lower solubilization (<20%). In contrast, all fertilizers showed high solubility in 2% citric acid (except for S + ASD). After leaching, soil P fractionation disclosed that the P leftover in the soil remained mostly in the labile and moderately labile pools. Composting and the ASD process produced materials with slow P solubilization, being favored in acidic soils and in plant’s rhizosphere. In turn, S + MAP resulted in a promising product with intermediate P solubility, better synchronized with crop demand, potentially increasing P-use efficiency. Our results shed light in the physico-chemical properties and on the solubilization dynamics of novel organomineral products in tropical soil conditions.
Keywords