eLife (Jul 2021)

Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin

  • Jee Min Kim,
  • Pat Visanpattanasin,
  • Vivian Jou,
  • Sheng Liu,
  • Xiaona Tang,
  • Qinsi Zheng,
  • Kai Yu Li,
  • Jonathan Snedeker,
  • Luke D Lavis,
  • Timothee Lionnet,
  • Carl Wu

DOI
https://doi.org/10.7554/eLife.69387
Journal volume & issue
Vol. 10

Abstract

Read online

Conserved ATP-dependent chromatin remodelers establish and maintain genome-wide chromatin architectures of regulatory DNA during cellular lifespan, but the temporal interactions between remodelers and chromatin targets have been obscure. We performed live-cell single-molecule tracking for RSC, SWI/SNF, CHD1, ISW1, ISW2, and INO80 remodeling complexes in budding yeast and detected hyperkinetic behaviors for chromatin-bound molecules that frequently transition to the free state for all complexes. Chromatin-bound remodelers display notably higher diffusion than nucleosomal histones, and strikingly fast dissociation kinetics with 4–7 s mean residence times. These enhanced dynamics require ATP binding or hydrolysis by the catalytic ATPase, uncovering an additional function to its established role in nucleosome remodeling. Kinetic simulations show that multiple remodelers can repeatedly occupy the same promoter region on a timescale of minutes, implicating an unending ‘tug-of-war’ that controls a temporally shifting window of accessibility for the transcription initiation machinery.

Keywords