Applied Sciences (Aug 2022)

Making Sense of Language Signals for Monitoring Radicalization

  • Óscar Araque,
  • J. Fernando Sánchez-Rada,
  • Álvaro Carrera,
  • Carlos Á. Iglesias,
  • Jorge Tardío,
  • Guillermo García-Grao,
  • Santina Musolino,
  • Francesco Antonelli

DOI
https://doi.org/10.3390/app12178413
Journal volume & issue
Vol. 12, no. 17
p. 8413

Abstract

Read online

Understanding radicalization pathways, drivers, and factors is essential for the effective design of prevention and counter-radicalization programs. Traditionally, the primary methods used by social scientists to detect these drivers and factors include literature reviews, qualitative interviews, focus groups, and quantitative methods based on surveys. This article proposes to complement social science approaches with computational methods to detect these factors automatically by analyzing the language signals expressed in social networks. To this end, the article categorizes radicalization drivers and factors following the micro, meso, and macro levels used in the social sciences. It identifies the corresponding language signals and available language resources. Then, a computational system is developed to monitor these language signals. In addition, this article proposes semantic technologies since they offer unique exploration, query, and discovery capabilities. The system was evaluated based on a set of competency questions that show the benefits of this approach.

Keywords