Polymers (Dec 2021)

Closed-Cell Rigid Polyimide Foams for High-Temperature Applications: The Effect of Structure on Combined Properties

  • Yawei Shi,
  • Aijun Hu,
  • Zhiyuan Wang,
  • Kedi Li,
  • Shiyong Yang

DOI
https://doi.org/10.3390/polym13244434
Journal volume & issue
Vol. 13, no. 24
p. 4434

Abstract

Read online

Closed-cell rigid polyimide foams with excellent thermal stability and combined properties were prepared by thermal foaming of a reactive end-capped polyimide precursor powder in a closed mold. The precursor powder was obtained by thermal treatment of a polyester-amine salt (PEAS) solution derived from the reaction of the diethyl ester of 2,3,3′,4′-biphenyl tetracarboxylic dianhydride (α-BPDE) with an aromatic diamine mixture of p-phenylenediamine (PDA) and 2-(4-aminophenyl)-5-aminobenzimidazole (BIA) in the presence of an end-capping agent (mono-ethyl ester of nadic acid anhydride, NE) in an aliphatic alcohol. The effect of polymer mainchain structures on the foaming processability and combined properties of the closed-cell rigid polyimide foams were systematically investigated. The polyimide foams (100–300 kg/m3) with closed-cell rates of 91–95% show an outstanding thermal stability with an initial thermal decomposition temperature of ≥490 °C and a glass transition temperature of 395 °C. Polyimide foams with density of 250 kg/m3 exhibited compression creep deformation as low as 1.6% after thermal aging at 320 °C/0.4 MPa for 2 h.

Keywords