Optimizing Dacarbazine Therapy: Design of a Laser-Triggered Delivery System Based on β-Cyclodextrin and Plasmonic Gold Nanoparticles
Sebastián Quintana-Contardo,
Orlando Donoso-González,
Erika Lang,
Ariel R. Guerrero,
Michael Noyong,
Ulrich Simon,
Marcelo J. Kogan,
Nicolás Yutronic,
Rodrigo Sierpe
Affiliations
Sebastián Quintana-Contardo
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
Orlando Donoso-González
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
Erika Lang
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
Ariel R. Guerrero
Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
Michael Noyong
Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
Ulrich Simon
Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
Marcelo J. Kogan
Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
Nicolás Yutronic
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
Rodrigo Sierpe
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
Dacarbazine (DB) is an antineoplastic drug extensively used in cancer therapy. However, present limitations on its performance are related to its low solubility, instability, and non-specificity. To overcome these drawbacks, DB was included in β-cyclodextrin (βCD), which increased its aqueous solubility and stability. This new βCD@DB complex has been associated with plasmonic gold nanoparticles (AuNPs), and polyethylene glycol (PEG) has been added in the process to increase the colloidal stability and biocompatibility. Different techniques revealed that DB allows for a dynamic inclusion into βCD, with an association constant of 80 M−1 and a degree of solubilization of 0.023, where βCD showed a loading capacity of 16%. The partial exposure of the NH2 group in the included DB allows its interaction with AuNPs, with a loading efficiency of 99%. The PEG-AuNPs-βCD@DB nanosystem exhibits an optical plasmonic absorption at 525 nm, a surface charge of −29 mV, and an average size of 12 nm. Finally, laser irradiation assays showed that DB can be released from this platform in a controlled manner over time, reaching a concentration of 56 μg/mL (43% of the initially loaded amount), which, added to the previous data, validates its potential for drug delivery applications. Therefore, the novel nanosystem based on βCD, AuNPs, and PEG is a promising candidate as a new nanocarrier for DB.