Fire (May 2024)
Numerical Simulation and Consequence Analysis of Full-Scale Jet Fires for Pipelines Transporting Pure Hydrogen or Hydrogen Blended with Natural Gas
Abstract
The use of existing natural gas pipelines for the transport of hydrogen/natural gas mixtures can achieve large-scale, long-distance and low-cost hydrogen transportation. A jet fire induced by the leakage of high-pressure pure hydrogen and hydrogen-blended natural gas pipelines may pose a severe threat to life and property. Based on the Abel–Nobel equation of state and a notional nozzle model, an equivalent pipe leakage model is established to simulate high-pressure pipeline gas leakage jet fire accidents. Large-scale high-pressure hydrogen and natural gas/hydrogen mixture jet fires are simulated, showing the jet impingement process and obtaining an accurate and effective simulation framework. This framework is validated by comparing the simulated and experimental measured results of flame height, flame appearance and thermal radiation. Several combustion models are compared, and the simulated data show that the non-premixed chemical equilibrium combustion model is superior to other combustion models. The influence of the pipe pressure and the hydrogen blending ratio on the consequences of natural gas/hydrogen mixture pipeline leakage jet fire accidents is explored. It is found that when the hydrogen blending ratio is lower than 22%, the increase in the hydrogen blending ratio has little effect on the decrease in the thermal radiation hazard distance.
Keywords