Aerospace (Apr 2025)

Damage Evaluation of Typical Aircraft Panel Structure Subjected to High-Speed Fragments

  • Yitao Wang,
  • Teng Zhang,
  • Hanzhe Zhang,
  • Liying Ma,
  • Yuting He,
  • Antai Ren

DOI
https://doi.org/10.3390/aerospace12040354
Journal volume & issue
Vol. 12, no. 4
p. 354

Abstract

Read online

This study explores the damage behavior of typical titanium alloy aircraft panel structures under high-speed fragment impacts via ballistic experiments and FEM-SPH simulations. Using a ballistic gun and two-stage light gas gun, tests were conducted with spherical, rhombic, and rod-shaped fragments at 1100–2100 m/s to analyze damage morphology. The FEM-SPH method effectively modeled dynamic impacts, capturing primary penetration and debris cloud-induced secondary damage. Residual strength under tension was evaluated via multiple restart analysis, linking impact dynamics to post-damage mechanics. Experimental results revealed fragment-dependent damage modes: spherical fragments caused circular shear holes with conical/jet-like debris clouds; rhombic fragments induced irregular tearing and triangular perforations due to unstable flight; rod-shaped fragments produced elongated breaches with extensive plastic deformation in stringers. Numerical simulations accurately reproduced debris cloud diffusion and secondary effects like spallation. Residual strength analysis showed tensile capacity was governed by breach geometry and location: rhombic breaches (34.6 kN) had lower strength than circular/square ones (38.1–38.3 kN) due to tip stress concentration, while stringer-located damage increased ultimate load by 8–12% via structural redundancy. In conclusion, high-speed fragment impacts dominate shear/tensile tearing, with morphology dependent on fragment characteristics and impact conditions. Debris cloud-induced secondary damage must be considered in structural assessments. The FEM-SPH method is effective for complex damage simulation, while breach geometry and damage location are critical for residual strength. Stringer involvement enhances load-bearing capacity, highlighting component-level design importance for aircraft survivability. The study results and methodologies presented herein can serve as references for aircraft structural damage analysis, residual strength evaluation of battle-damaged structures, and survivability design.

Keywords