Results in Physics (Jun 2022)
New optical solitons of fractional nonlinear Schrodinger equation with the oscillating nonlinear coefficient: A comparative study
Abstract
In this current exploration, some new optical soliton structures of fractional nonlinear Schrodinger equation with the oscillating nonlinear coefficient are constructed with three different definitions of fractional operators beta, Riemann–Liouville, and M-Truncated derivatives. These structures are computed with the help of the new auxiliary equation method. This method gives the new analytical solutions of the considered model. The analysis is done by considering the different definitions of the derivatives like Beta, Riemann–Liouville (RL), and M-Truncated derivatives. The considered equation is converted to an ordinary differential equation (ODE) by the use of this complex transformation. The graphical explanation of some obtained results is also elaborated in detail. This work is new and does not exist in literature.